Constraint in Automated HBT Method

By Bohdan Raczynski, August 3023

In Part I, titled "Automated Method For Minimum-Phase Extraction Using HBT", the concept of constrained optimization was introduced. In this paper, we will examine this aspect in more details.

We now return to the tweeter driver presented in Part I.

Figure 1. Example of SPL/Phase response of a tweeter driver.

Please note, that there is virtually no SPL/Phase data above 22kHz. Still, we should run the minimum-phase extraction over several possible attachment points and examine the results.

		Driver's Na	me	Jaycar_DT2	25_25cm_	dist.res		
Start Bin =	85	Smooth =	1/24dB/oct	1	Window =	10m s		
Start HBT	400Hz	12dB	22000Hz	40dB				
HBT LP Start	HBT HP Start	FFT Bin	Delay ms	LP Order	HP Order	Error	Bins	Error
17000	400	90	0.002	8.94	11.99	330.558	284	1.16394
18000	400	90	-0.002	14.38	12	366.937	289	1.26968
19000	400	90	-0.002	14.75	11.99	398.982	293	1.36171
20000	400	90	0	11.93	12	422.975	297	1.42416
21000	400	90	0.002	8.97	12	464.848	300	1.54949
22000	400	90	0	10.85	11.99	630.953	304	2.0755
23000	400	90	-0.004	16.44	11.97	759.751	307	2.47476

Frequency responses of Tweeter 1 shown on Figure 1, that frequency range 17-20kHz will meaningfully contribute to the accuracy of the process, and 22kHz frequency may be too close to the limit of reliable data. Therefore, 21kHz attachment point is selected. It is

observable, that low-pass slope attached at 21000Hz is not doing its job properly. Resulting phase response is too shallow. See Figure 2 below.

Constrained II	HBT optim	ization at	21000Hz	leads to	the follo	wing res	ult

	. 1					. 0				
								IHBT	Normaliz	ed
IHBT LP Start	IHBT HP Start	FFT Bin	Delay ms	LP Order	HP Order	Error	Bins	Error	Error	
17000	400	90	-0.008	18.06	11.91	670.741	284	9.95	2.36176	
18000	400	90	-0.008	20.2	11.94	486.404	289	10.07	1.68306	
19000	400	90	-0.01	22.94	11.94	684.873	293	11.17	2.33745	
20000	400	90	-0.01	22.72	11.91	979.844	297	14.25	3.29914	
21000	400	89	0.01	23.43	12.02	1243.452	300	18.88	4.14484	
22000	400	89	0.01	23.69	12.01	1185.611	304	21.66	3.90004	
23000	400	90	-0.006	18.9	11.95	759.968	307	19.45	2.47547	

Figure 3. Phase response obtained using constrained optimization.

Next driver is a woofer driver.

Examination of the frequency response would indicate problematic SPL response above 5kHz.

Figure 4. Example of SPL/Phase response of a woofer driver

		Driver's Na	ame	Rear_Spea	iker_50cm	i.res			
HBT Method									
Start Bin =	119	Smooth =	1/12 dB/oc	:t	Window =	25 m s			
Start HBT	50Hz	18.5	4000	40					
						After HBT		Normaliz	ed
HBT LP Start	HBT HP Start	Bin	Delay	LP Order	HP Order	Error	Bins	Error	
4000	50	127	0.008	12.5	9.96	486.676	332	1.46589	
5000	50	123	0.008	38.42	9.92	385.908	349	1.10575	
6000	50	124	0	36.08	9.95	542.306	362	1.49808	
7000	50	124	-0.006	42.36	9.96	718.29	374	1.92056	
8000	50	122	0.004	60.48	9.95	635.101	384	1.65391	
9000	50	120	0.002	88.43	9.92	586.1	393	1.49135	
10000	50	117	0.006	129.45	9.9	770.884	401	1.9224	

Unconstrained HBT optimization is shown on Figure 5 below. If it wasn't for the tabulated Errors, it would be difficult to visually determine the best phase match. Even so, the Normalized Errors are not far from each other between 6000Hz attachment point, and 10000Hz result..

Figure 5. Example of visually very good phase match at 10kHz attachment point.

Compare the observations from above, to the "Constrained IHBT" optimization results tabulated below. The Normalized Error values increase markedly with the changes in the position of the attachment points. The Error at 10000Hz if almost **40 times higher** than at 5000Hz.

						After HBT		IHBT	Normaliz	ed
IHBT LP Start	IHBT HP Start	Bin	Delay	LP Order	HP Order	Error	Bins	Error	Error	
4000	100	126	-0.01	21.05	9.9	781.05	332	9.83	2.35256	
5000	100	123	0.008	38.42	9.92	385.908	349	9.48	1.10575	
6000	100	124	0	36.08	9.95	542.306	362	11.64	1.49808	
7000	100	124	0.01	36.32	9.99	861.57	374	16.55	2.30366	
8000	100	124	-0.002	45.13	10.02	1598.38	384	18.78	4.16245	
9000	100	123	0.008	55.55	10.06	5150.94	393	37.4	13.1067	
10000	100	123	-0.004	68.23	10.12	16123.02	401	114.57	40.207	

Figure 5, showing the phase match at 10kHz attachment point, is a good example why we need numerical indication of the Cumulative Error, preferably normalized to the number of data bins used. Visually, there is nothing wrong with this phase match, and even numerically, the Normalized Error at 10kHz is 1.92, while the Averaged Error for all attachment points is 1.58.

The results tabulated above for the constrained IHBT Method show rapid increase in Error for higher attachment points.

Finally, the results for the preferred 5000kHz attachment point are the same for both methods. This is to be expected, as both methods work on same principles. Automation just makes things quicker and more accurate. Please see Figure 6 and Figure 7.

For 5kHz attachment point, the results from constrained IHBT and unconstrained HBT are identical. The 5kHz attachment point is quite safe to select.

With the next tweeter driver, the situation is similar to the first tweeter. We observe, that frequency range 17-20kHz will meaningfully contribute to the accuracy of the process, and 22kHz frequency is too close to the limit of reliable data. Therefore, 21kHz attachment point is selected again.

Figure 8. Example of SPL/Phase response of a tweeter driver.

Unconstrained optimization using HBT method yelds the attachment-dependant responses tabulated below

		Driver's Na	me	Front_Left	_Speaker	Tweet	er_50cm	.res	
Start Bin =	119	Smooth = :	1/24dB/oct		Window =	10 m s			
Start HBT	400Hz	12dB	22000Hz	40dB					
								Normaliz	ed
HBT LP Start HB	T HP Start	Bin	Delay	LP Order	HP Order	Error	Bins	Error	
17000	400	122	-0.002	15.65	10.99	298.285	284	1.0503	
18000	400	122	-0.004	18.75	11.01	358.422	289	1.24021	
19000	400	122	-0.004	19.3	11.01	420.824	293	1.43626	
20000	400	122	-0.004	19.34	11.01	433.59	297	1.4599	
21000	400	122	-0.006	21.5	10.99	494.438	300	1.64813	
22000	400	121	0.01	27.77	10.81	751.727	304	2.47279	
23000	400	121	0.006	33.57	10.78	832.637	307	2.71217	

Please note, that the SPL response starts to show dropping tendency towards higher frequency. This is valuable information for all employed methods, and results in more accurate phase response determination.

Figure 9. Phase response from unconstrained HBT method.

Constrained optimizations are tabulated below. Please note, that 22kHz Error is lower than 21kHz Error (last column). It was therefore decided to use 22kHz attachment point.

17000	400	122	-0.01	22.94	10.93	479.858	284	8.86	1.68964
18000	400	122	-0.008	22.64	10.97	393.292	289	10.28	1.36087
19000	400	122	-0.008	23.39	10.97	488.926	293	11.13	1.66869
20000	400	121	0.01	26.66	10.77	736.668	297	14.23	2.48036
21000	400	121	0.008	29.09	10.76	840.937	300	17.97	2.80312
22000	400	121	0.008	30.14	10.78	759.795	304	18.25	2.49933
23000	400	122	-0.008	25.03	11.02	882.543	307	24.56	2.87473

Lastly, the second woofer frequency response is shown below. Examining the measured SPL, it would be prudent to assume, that break-up region would start above 6kHz. Therefore the highest attachment point would be 6kHz.

		Driver's Na	ime	IMP_RES_2	2.res				
Start Bin =	74	Smooth =	1/12 dB/oc	t	Window =	120m s			
Start HBT	50Hz	18.5dB	5000	40dB					
						After HBT		Normaliz	ed
HBT LP Start	HBT HP Start	Bin	Delay	LP Order	HP Order	Error	Bins	Error	
5000	50	78	-0.012	24.87	15.74	2836.715	349	8.12812	
6000	50	79	0	13.67	15.76	2939.151	362	8.1192	
7000	50	79	-0.002	16.47	15.76	3004.126	374	8.03242	
8000	50	78	-0.01	31.85	15.76	2947.261	384	7.67516	
9000	50	77	0.004	35.21	15.73	3089.631	393	7.86166	
9500	50	77	-0.002	38.34	15.72	3174.942	397	7.99734	
10000	50	76	0.008	44.24	15.7	3443.358	401	8.58693	

Attachment-dependant tabulated results show the Normalized Error is very close for all attachment points. It would be very challenging indeed to discriminate between those by visually inspecting phase matches.

The 6kHz attachment point was selected for unconstrained HBT method.

Figure 12. Phase response from unconstrained HBT method

								IHBT	Normalized
IHBT LP Start	IHBT HP Start	Bin	Delay	LP Order	HP Order	Error	Bins	Error	Error
5000	100	76	-0.004	34.02	15.65	3335.05	349	9.44	9.55602
6000	100	77	0	27.18	15.67	3789.58	362	11.66	10.4685
7000	100	78	-0.01	27.39	15.72	3536.02	374	12.51	9.4546
8000	100	77	-0.002	37.36	15.72	3171.76	384	12.99	8.25979
9000	100	77	-0.006	40.04	15.71	3196.92	393	14.31	8.13466
9500	100	77	-0.01	42.4	15.71	3243.13	397	15.85	8.16909
10000	100	76	0.002	47.44	15.68	3501.49	401	21.15	8.7319

The constrained IHBT method resulted in different slopes.

Figure 13. Phase response from constrained IHBT method

What is the Constraint?

As observed on several Figures presented in Part I and in this paper, manual and automated methods occasionally drift into the "difficult-to-justify" set of parameters, that also produce unusual and unexpected plots, like Figure 2, Figure 5 and Figure 12.

The algorithms are designed to go and find the minimum error value, and they do it very efficiently, with high degree of accuracy. However, the selection of starting parameters, and the interpretation of the results lies with the human operator. For instance, starting FFT Bin for the optimization process is selected by the operator. Attachment points are selected by the operator, and as we are discussing, the constraint(s) are selected by the operator. There are other starting parameters, for sake of clarity, they will not be discussed here. Some of the reasoning behind selection of the attachment points was presented in this paper and should serve as a guidance for eliminating potential duds.

In Part I, it was suggested, that the constraint should be based on SPL response rather than phase response. Frankly speaking, I would not know how to define constraint based on phase response. SPL is much easier to deal with. We all know when the SPL curve does silly things.

Also, if we accept the SPL-based constraint, it <u>must not</u> be a "hard-limit" type of constraint. So, for instance, if one selects 40dB as a constraint for low-pass slope, it does not mean, that low-pass slope will be fixed at -40dB and the rest of the optimization must dance around this limit.

On Figure 2, as an example, the unconstrained optimization resulted in phase response corresponding to -8.97dB/oct asymptotic slope. In constrained optimization, the algorithm was asked to show the best phase matches around -30dB/oct asymptotic slope – and the algorithm presented Figure 3, with -23.43dB/oct low-pass asymptotic slope.

The unconstraint optimization results shown on Figure 12, resulted in the woofer roll-off with berely 2-nd order slope of -13.67dB/oct. While constrained optimization gave more realistic - 27.18dB/oct.

Validity of the constraint can be evaluated by selecting different constraint values and running the constrained algorithm for a case presented on Figure 7.

		Driver's Na	ame	Rear_Spea	iker_50cm	i.res				
IHBT Method										
Start Bin =	117	Smooth =	1/12 dB/od	t	Window =	25m s				
Start IHBT	80Hz	Stop IHBT	5000 Hz		НВТ	50-5000Hz				
						After HBT		ІНВТ	Normaliz	ed
Constraint [dB]	IHBT HP Start	Bin	Delay	LP Order	HP Order	Error	Bins	Error	Error	
20	80	125	0.006	27.59	9.99	896.698	349	17.95	2.56934	
30	80	124	0.006	33.29	9.95	503.873	349	15.92	1.44376	
40	80	123	0.008	38.42	9.92	385.997	349	14.34	1.10601	
50	80	122	0.008	44.1	9.89	517.506	349	13.03	1.48283	
60	80	121	0.008	49.78	9.85	921.826	349	12.37	2.64134	
70	80	120	0.01	54.91	9.82	1524.214	349	12.07	4.36738	
80	80	119	0.01	60.58	9.78	2450.726	349	12.28	7.02214	
90	80	118	0.01	66.25	9.74	3647.665	349	13	10.4518	
100	80	118	-0.01	71.68	9.72	5047.401	349	14.37	14.4625	
110	80	117	-0.008	76.79	9.69	6589.273	349	15.5	18.8804	
120	80	116	-0.006	81.9	9.65	8346.337	349	17.6	23.915	

The low-pass attachment point was selected as 5000Hz, therefore constrained optimization was run within 80Hz-5000Hz for different Constraint values 20dB - 120dB and the results are tabulated above. The Normalized Error shown on the last column, is clearly the lowest for Constraint = 40dB (green font above). The Error Curve (brown curve) progress is shown on Figure 14 below.

Analyzing Errors

Having the Cumulative Error value and particularly the Normalized Cumulative Error Value assisting in phase extraction decisions is of a great help. But there is more to it.

In the next set of tabulated results, the Cumulative Error was split into Hi-End Error (above 4000Hz) and Low-End Error (below 4000Hz).

												4kHz = 50)5 bin		
Start Bin =	74	Smooth =	1/12 dB/o	:t	Window =	120 m s									
Start HBT	50Hz	18.5dB	5000	40dB								Hi-End			
						After HBT		Normaliz	ed	Hi-End	Hi-End	Normaliz	ed	Low-End	Normalized
HBT LP Start	HBT HP Start	Bin	Delay	LP Order	HP Order	Error	Bins	Error		Error	Bins	Error		Error	Low-End Error
5000	50	78	-0.012	24.87	15.74	2836.715	349	8.12812		5.48422	17	0.3226		2831.2308	8.527804
6000	50	79	0	13.67	15.76	2939.151	362	8.1192		57.2272	30	1.90757		2881.9239	8.680494
7000	50	79	-0.002	16.47	15.76	3004.126	374	8.03242		86.8848	42	2.06868		2917.2412	8.786871
8000	50	78	-0.01	31.85	15.76	2947.261	384	7.67516		59.4415	52	1.14311		2887.8195	8.698251
9000	50	77	0.004	35.21	15.73	3089.631	393	7.86166		128.042	61	2.09906		2961.5886	8.920448
9500	50	77	-0.002	38.34	15.72	3174.942	397	7.99734		216.979	65	3.33814		2957.9632	8.909528
10000	50	76	0.008	44.24	15.7	3443.358	401	8.58693		408.886	69	5.92589		3034.4716	9.139975
											Growth	18.3692		Growth	1.071785

Probably the most interesting aspect of this analysis is the growth of Hi-End Error and Low-End Error calculated for different low-pass attachment points.

The growth of Normalized Low-End Error is only **1.0717 times** for attachments 5kHz-10kHz The growth of Normalized High-End Error is a wooping **18.36 times** for attachments 5kHz-10kHz. It is important to calculate <u>Normalized</u> values, because they account for increased number of frequency bins at high-end of the bandwidth.

It is evident, that almost all the growth in Error values comes from drifting into the break-up region. On the next Figure 16, the plots also incorporate the Error Value (thick brown line) versus frequency plots. The attachemnt points start at 5kHz and end at 10kHz.

Figure 16. Error split into two regions.

There is very little change in Error Value the lower frequency range. All the growth comes from moving the attachment point into the break-up region.

The Error Value in the low-frequency region will be affected by Windowing and Smoothing parameters. In this case, the effect is the opposite, and the Error does not change very much at

the high end, but (as in the example below), the Error is 3 times lower at low end of the frequency range for narrower FFT Window of 30ms.

FFT Window = 120ms, Smoothing = 1/12dB/oct

FFT Window = 30ms, Smoothing = 1/12dB/oct

Figore 17. Low-frequency Error depends on Windowing and Smoothing

Finally, we examine one more tweeter driver. This one has been sampled at 96kHz, using tabulated results for different attachment point, shown below.

		Driver's Na	ame	Raw_Tweet	er_0.0deg_1	.00cm.res			
Start Bin	323	Smooth=	1/48dB/oc	t	Window =	5m s	Time Ste	p =	0.001m s
Start HBT	400	12	40000	40dB					
								Normaliz	ed
HBT LP Start	HBT HP Start	Bin	Delay	LP Order	HO Order	Error	Bins	Error	
38000	400	327	-0.002	50.93	12.84	500.299	345	1.45014	
39000	400	327	-0.003	53.84	12.83	535.64	347	1.54363	
40000	400	327	-0.004	56.95	12.82	539.388	349	1.54552	
41000	400	326	0.005	61.47	12.82	507.413	351	1.44562	
42000	400	326	0.005	67.67	12.81	455.586	353	1.29061	
43000	400	326	0	76.48	12.8	418.701	355	1.17944	
44000	400	326	-0.001	79.88	12.8	432.41	356	1.21463	
45000	400	326	-0.004	89.37	12.8	559.564	358	1.56303	
46000	400	326	-0.004	91.45	12.8	1076.5	360	2.99028	
47000	400	326	-0.004	92.44	12.83	1603.311	361	4.4413	

The SPL and phase response corresponding to the minimum Normalized Error of 1.17944. The final low-pass SPL slope is presented as black thick line of -76dB/oct roll-off.

It seems to be quite fast roll-off, and the combined SPL response looks unnatural. It would be very challenging to visually discriminate for the best phase match between 38kHz right up to 45kHz attachment points. The errors are very close to each other indeed.

Even steeper roll-offs are require to satisfy minimum errors at 44kHz – 47kHz. At 47kHz attachment point the roll-off is -92.44dB/oct.

The phase responses for 40kHz and 43kHz attachment points using Un-Constrained HBT method are plotted below.

Phase responses for 40kHz and 43kHz attachment

It is observable, that the phase difference is 48 deg at 20kHz (green line).

Similarly, the same tweeter was examined using Constrained IHBT Method. Two full runs were conducted. One for 40kHz attachment point and one for 43kHz attachment point

Run 1: From 400Hz To 40000Hz

	B 327, Del 0.003, E 1434.30, Con 40, NE 4.1097, LP 41.94, HP 12.91, E-LP -1.94
	B 327, Del 0.001, E 983.08, Con 45, NE 2.8168, LP 46.23, HP 12.88, E-LP -1.23
	B 327, Del 0.000, E 816.17, Con 50, NE 2.3386, LP 48.38, HP 12.87, E-LP 1.62
	8 327, Del -0.002, E 599.76, Con 55, NE 1.7185, LP 52.66, HP 12.85, E-LP 2.34
	B 327, Del -0.003, E 550.19, Con 60, NE 1.5765, LP 54.82, HP 12.84, E-LP 5.18
	B 327, Del -0.004, E 539.44, Con 65, NE 1.5457, LP 56.95, HP 12.82, E-LP 8.05
	B 326, Del 0.005, E 616.70, Con 70, NE 1.7671, LP 59.94, HP 12.80, E-LP 10.06
1	B 326, Del 0.004, E 706.04, Con 75, NE 2.0230, LP 62.08, HP 12.78, E-LP 12.92
l	B 326, Del 0.002, E 1001.26, Con 80, NE 2.8689, LP 66.36, HP 12.76, E-LP 13.64
l	B 326, Del 0.001, E 1207.32, Con 85, NE 3.4594, LP 68.51, HP 12.76, E-LP 16.49
l	B 326, Del 0.000, E 1452.35, Con 90, NE 4.1614, LP 70.66, HP 12.75, E-LP 19.34
l	B 326, Del -0.001, E 1736.35, Con 95, NE 4.9752, LP 72.79, HP 12.74, E-LP 22.21
l	B 326, Del -0.003, E 2415.48, Con 100, NE 6.9211, LP 77.08, HP 12.71, E-LP 22.92
I	B 326, Del -0.004, E 2814.04, Con 105, NE 8.0631, LP 79.22, HP 12.71, E-LP 25.78
I	B 325, Del 0.005, E 3455.32, Con 110, NE 9.9006, LP 82.26, HP 12.68, E-LP 27.74
I	

Run 2: From 400Hz To 43000Hz

B 327, Del 0.000, E 2797.17, Con 40, NE 7.8794, LP 52.28, HP 12.93, E-LP -12.28
B 327, Del -0.001, E 2356.65, Con 45, NE 6.6385, LP 54.59, HP 12.92, E LP -9.59
B 327, Del -0.002, E 1961.28, Con 50, NE 5.5247, LP 56.91, HP 12.90, E LP -6.91
B 327, Del -0.003, E 1611.23, Con 55, NE 4.5387, LP 59.24, HP 12.90, E LP -4.24
B 327, Del -0.004, E 1306.72, Con 60, NE 3.6809, LP 61.55, HP 12.89, E-LP -1.55
B 326, Del 0.005, E 995.68, Con 65, NE 2.8047, LP 64.89, HP 12.87, E-LP 0.11
B 326, Del 0.003, E 629.74, Con 70, NE 1.7739, LP 69.53, HP 12.85, E-LP 0.47
B 326, Del 0.002, E 513.85, Con 75, NE 1.4475, LP 71.84, HP 12.83, E-LP 3.16
B 326, Del 0.001, E 443.66, Con 80, NE 1.2497, LP 74.15, HP 12.82, E-LP 5.85
B 326, Del 0.000, E 418.70, Con 85, NE 1.1794, LP 76.48, HP 12.81, E-LP 8.52
B 326, Del -0.001, E 438.50, Con 90, NE 1.2352, LP 78.79, HP 12.79, E-LP 11.21
B 326, Del -0.003, E 612.59, Con 95, NE 1.7256, LP 83.42, HP 12.77, E-LP 11.58
B 326, Del -0.004, E 767.18, Con 100, NE 2.1611, LP 85.73, HP 12.77, E-LP 14.27
B 326, Del -0.005, E 966.67, Con 105, NE 2.7230, LP 88.05, HP 12.75, E-LP 16.95
B 325, Del 0.004, E 1314.76, Con 110, NE 3.7036, LP 91.34, HP 12.74, E-LP 18.66

The SPL constraint (Con XX above) for low-pass slope was varied from 40dB to 110dB and IHBT method was run for all these values. Resulting FFT Bin values (B XXX above), Error Values (E XXX.X above), Normalized Error (NE X.XXXX above) Low-Pass slope (LP XX.XX above) and the difference between Constraint – Low-Pass slope (E-LP X.XX) were tabulated.

It is observable, that E-LP parameter can be negative, zero (or close to zero) or positive. When the E-LP = 0, the constraint is not active, and the process can be considered unconstrained.

For E-LP = 0.11 (close to zero), the algorithm recommends 64dB/oct Low-Pass slope.

The recommended excess phase values were plotted for both attachment points 40kHz and 43kHz, and compared – see plots below.

40kHz and 43kHz Constrained IHBT method

Constrained IHBT Phase Difference 38 deg at 20kHz (green line).

It is observable, that Constrained HBT method offered reduction in excess phase difference from 48 deg to 38deg at 20kHz, which is by 20.8%.

This is not a large value, but combined with the recommended slope of 64dB/oct (vs 76dB/oct) seems to be shifting the excess phase result in the right direction.

One final interesting observation: the averaged value of 4 slopes for attachment poins between 40kHz, 41kHz, 42 kHz and 43kHz is equal to 65.64dB/oct. It may not be a bad idea, to select 41.5kHz attachment point and 65dB low-pass slope. Both methods seem to be pointing to the same conclusion.

Conclusions

Once the measurement process using MLS or ESS methods is completed, you are presented with SPL and Phase responses. Next comes the all-important question: "And now what?".

Minimum-Phase extraction process can be rather complicated process. In order to lessen the burden, a selection of tools and methods has been devised, encompasing (1) inclusion of all measurement processes and measurement options, (2) automation, (3) various numerical error presentations, (4) Error vs. frequency display curve and (5) common senese analysis of all these results. It is advisable to use as many tools as there are available to estimate the elusive minimum-phase response of a measured driver.

Most often, the smallest error will be the best indication of the phase correctness. Other times, bizzare SPL curve will eliminate some results, and what's left would be the correct phase outcome. Finally, analysis of the measured SPL/Phase curve will offer some clues as to what the next step should be in selecting automation options, particularly when strategically selecting the attachment points. Some more insight can be provided by the IHBT method here.

When analysing the results, it would be prudent, to take into account sensitivities of the whole phase extraction to changes in parameters of measurement process. For instance, it would be incorrect to compare phase errors calculated for different windowing or smoothing parameters. The two Windowing example figures presented before show the Average Error = 2.60705 for 30ms FFT Window, as opposed to Average Error = 8.11727 for 120ms FFT Windows. Parameters of the measurement process need to be selected based on sound measurement practices, and kept constant for all phase extraction activities.

Cumulative Error is a good indication of where the things are going globally. Normalized Error helps to determine if extending the bandwidth via moving the attachment points causes the error to grow unusually large. For instance, if the phase difference between measured and HBT-drived phase is a steady 1 degree per frequency point, the Cumulative Error over 1 data point will be equal to 1. Cumulative Error for extended bandwith of 10 data points will be equal to 10. But Normalized error will be still equal to 10/10 = 1. So, it will be the Normalized Error, that will alert you to unusually large phase gaps. Examining the Error vs. frequency plot is also beneficial.

Normalized Error vs. Constraint tabulated results and Normalized Error vs Attachment Point tabulated results would ideally reconcile with the same location of the FFT window and delay, and therefore the same excess phase.

The HBT Method and IHBT Method described in Part I and in this paper above, work essentially off the same principles, therefore, they produce the same results. The methods were designed to compliment each other, and act as a consistency check for each other. Any differences could be attributed to the finite time-step resolution in algorithmic implementation and are negligible. The processes allow the user to extract minimum-phase response with +/- 1usec accuracy when used with 96kHz sampling.

Thank you for reading Bohdan