SPL and Pre-Ringing Comparison Within 0-60deg polar radiation
By Bohdan Raczynski

This paper attempts to quantify off-axis performance of a DSP equalized
loudspeakers. The loudspeakers system used for the measurements are a very simple 2-
way design, with a 1”’/50W metal dome tweeter and 8”/90W woofers mounted on a flat
baffle. Frequency response of the system was aimed at 45Hz-20000Hz, but with a DSP
equalization was extended to 45Hz-30000Hz.

Figure 1. W-220P woofer and D25AG tweeter used in this project

Woofer’s data

Woofer W-220P
SPECIFICATIONS
. PARAMETERS
Size a
Nominal Diameter 200 Re i Ohm
RMS Power 100w Fl 1H
Maximal Power 2004 ams 158
Rated Impedance a0 (es 043
Sensitivity 2948 Ot 033
Frequency Range fo-ak Hz Zrnax 27 Ohmn
Basket Material steel
: 5d 0.022698 m°
Gasket Material y 2695
Cane Material coating with PP paper ms 43y
Surround Material rubber Mmd 488y
Magnet Material fertite BL 818Tm
Magnet Weight'Overall size 33 0zipl 28 Hmax .8 mm
Yoice Coil Diameter 1.53" (38.8) Crms 11870 MiN
Forrner Matetial aluminiurm Vag aFATL
Wire capper
Layers two SIMULATION DESIGN
Spider Matarial cotton -
) Cahinet Type vented enclosure
Terminals Type plug
Shorting Ring Recommended Enclosure Yolume L
Magnet Structure Recornmended PORT of Cabinet Dimension §B5=200
Highest Recommend Crossover =25k i ITHz



Tweeter’s data

NOMINAL IMPEDANCE 6 O
NOMINAL POWER (IEC 268-5) 100 W
FREQUENCY RANGE 1,5-35 kHz
SENSITIMITY (1W, 1m) B3 dB
EFFECTIVE DIAPHRAGM AREA 7.1 em?
VOICE COIlL RESISTANCE 4,6 Q
OPERATING POWER 5 W
VOICE COIL DIAMETER 25 mm
VOICE COIL HEIGHT 1,6 mm
AR CAP HEIGHT 2 mm
FREE AIR RESOMANCE 850 Hz
MOVYING MASS (incl. air) 0,3 g
FORCE FACTOR, B x | 3,3 Txm
MAGNET WEICHT (8,5 oz) 240 g
! S——

Vifa DG25AG metal dome tweeter treatment

The DG25AG tweeter is equipped with a phase plug, designed to flatten the high-
end of the frequency response. This approach works reasonably well, but there has been
some criticism of “tizzy sound” attributed to this driver.
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Flgure 2. Vifa tweeter Wlth the phase plug (Ieft) and without phase plug (rlght)
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Also, the off-axis SPL curves roll-off more smoothly without the phase plug. It
has been decided to remove the phase plug from the front of the metal dome. All
subsequent measurements have been conducted on the tweeter with set of figures as
presented on the right.

Measurement equipment

1. All measurements were conducted using SoundEasy V18, with MLS system
running at 96kHz sampling frequency.

2. DSP processor was Ultimate Equalizer V5 (UE5), also running at 96kHz.

3. Test power amplifier - LM3876, a simple 50Watt integrated design from
National Semiconductor, originally had 3dB cut off at 16Hz. Amplifier was
modified to lower the 3dB down to 2Hz.

4. Microphone pre-amplifier — A commercial design based on low-noise, LM833
chip. Modifications done to equalize microphone’s low-end roll off.

5. Microphone — CLIO Mic01. 8.2V DC bias provided by the pre-amplifier.
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6. Listening room has the following dimensions: Length = 6.5meters, width =
4.5meters and Hight = 2.6meters.

R SR :
Figure 4. Close-up of the small 2-way loudspeaker.
Notice 0,15,30,45 and 60degrees direction pointer sticks.
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Polar Measurement Results 200Hz-30000Hz

All curves presented below compare residual SPL irregularities of a system
with 2kHz/24dB LR crossover with Linear-Phase and HBT equalization, against simple
2kHz/24dB, LR crossover. HBT upper limit set on UES5 was 30kHz.
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Figure 5. Mike distance = 50cm, HBT+LinPh vs. crossover only — 0deg
Red = Linear_Phase + HBT EQ = 94dB-89dB = 5dB
Green = Minimum_Phase, No EQ =98dB-80dB = 18dB
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Figure 6. Mike distance = 50cm, HBT+LinPh vs. crossover only — 15deg
Red = Linear_Phase + HBT EQ = 96dB-86dB = 10dB
Green = Minimum_Phase, No EQ =96dB-78dB = 18dB
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B MLS Frequency Domain
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Figure 7. Mike distance = 50cm, HBT+LinPh vs. crossover only — 30deg

Red = Linear_Phase + HBT EQ = 95dB-74dB = 21dB
Green = Minimum_Phase No EQ = 92dB-68dB = 24dB
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Figure 8. Mike distance = 50cm, HBT+LinPh vs. crossover only — 45deg

Red = Linear_Phase + HBT EQ = 93dB-62dB = 31dB
Green = Minimum_Phase No EQ = 92dB-55dB = 37dB
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B MLS Frequency Domain
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Figure 9. Mike distance = 50cm, HBT+LinPh vs. crossover only — 60deg

Red = Linear_Phase + HBT EQ = 92dB-68dB = 24dB
Green = Minimum_Phase, No EQ =90dB-62dB = 28dB

Two-way WTW configuration loudspeaker for Center Channel in HT

The next loudspeaker is a typical 2-way system in WTW configuration. | use this
loudspeaker as center channel for the HT system. Measurement setup is shown below.

Conceptually, the front loudspeaker is a 2-way, vented system with two

87/90Wrms woofers and 1.125”/100Wrms silk dome Dayton shown below (selected over
Vifa tweeter), and making it quite a robust, medium-sized loudspeaker.
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_Figure 11. Raw RS28F-4 tweeter measurements (horizontal) 0, 15, 30, 45, 60 deg.
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Figure 12. Mike distance = 150cm, HBT+LinPh vs. crossover only — O0deg

Red = Linear_Phase + HBT EQ = 96dB-92dB = 4dB
Green = Minimum_Phase, No EQ =98dB-80dB = 18dB
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Figure 13. Mike distance = 100cm, HBT+LinPh vs. crossover only — 15deg

Red = Linear_Phase + HBT EQ = 96dB-88dB = 8dB
Green = Minimum_Phase, No EQ =97dB-75dB = 22dB
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B MLS Frequency Domain

SPL + Phase | Zin + Phase | Step Response | Mike + Preamp] RLC I Compare in Freq | Post Processing

ms
125 180 i}

Tl
120 160 i}
115 140 0
110 120 i}
105 100 0
100 80 4.0
95 60 o 0
i R TP RS LA

90 40 B i o
85 20 1.0
g0 0 il I
75 20 \ \ 10
70 -40 \ Y1y 20|
E5 -ED \ , " l =1
B0 &80 \\ " 4.0
55 -100 l 5.0/
60 120 \ 6.0
45 140 \ 7.0
40 160 60|
» 180 HERIEINE: BRI I
dB deg 5 B g 10 20 30 40 B0 80 100 200 300 400 E00 1k 2k 3k 4k Bk 8k 10k 20k 30k 40k B0k 80k Ha

Figure 14. Mike distance = 100cm, HBT+LinPh vs. crossover only — 30deg

Red = Linear_Phase + HBT EQ = 96dB-75dB = 21dB
Green = Minimum_Phase, No EQ = 97dB-63dB = 34dB
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Figure 15. Mike distance = 100cm, HBT+LinPh vs. crossover only — 45deg

Red = Linear_Phase + HBT EQ = 95dB-74dB = 21dB
Green = Minimum_Phase, No EQ = 96dB-65dB = 31dB



B MLS Frequency Domain
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Figure 16. Mike distance = 100cm, HBT+LinPh vs. crossover only — 60deg

Red = Linear_Phase + HBT EQ = 94dB-67dB = 27dB
Green = Minimum_Phase, No EQ = 95dB-67dB = 28dB

Horizontal Orientation

I MLS Frequency Domain

SPL + Phase | Zin + Phase | Step Response | Mike + F‘reamp] ALC } Compare in Freq | Post Processing

110
105
100

120 |
10 |

80
0
40
20
0

20 |
an f
|
a |
Ao
Ao |
A0
A8

-180

125 180 —

120 160 |

115 140 [

deg B

8 10 20 a0 40 B0 80 100 200 300 400 600 1k 2k 4k Bl Bk 10k 20k 30k 40k

.0
Elk 80k Hz

Figure 17. Mike distance = 100cm, HBT+LinPh vs. crossover only — Odeg

Red = Linear_Phase + HBT EQ = 96dB-93dB = 3dB
Green = Minimum_Phase, No EQ =98dB-72dB = 26dB
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Figure 18. Mike distance = 100cm, HBT+LinPh vs. crossover only — 15deg

Red = Linear_Phase + HBT EQ = 96dB-85dB = 11dB
Green = Minimum_Phase, No EQ =97dB-74dB = 23dB
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Figure 19. Mike distance = 100cm, HBT+LinPh vs. crossover only — 30deg

Red = Linear_Phase + HBT EQ = 97dB-70dB = 27dB
Green = Minimum_Phase, No EQ =95dB-59dB = 36dB
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Figure 20. Mike distance = 100cm, HBT+LinPh vs. crossover only — 45deg

Red = Linear_Phase + HBT EQ = 96dB-72dB = 24dB
Green = Minimum_Phase, No EQ = 92dB-65dB = 27dB

B MLS Frequency Domain

SPL + Phase | Zin + Phase | Step Response | Mike + Preamp] RLC } Compare in Freq | Post Processing

125 180 Sl
: : HE P
120 180 | o
15 140 | 0
10 120 | 50
105 100 | 0
100 80 0
) o
an 40 \ /("-—7\\ A 0
05 20 10
"
@ o \/ 20\ by
%o | 10
7040 | \/ ’\ 20
50 | ‘:\ \\ ag
: X,
B0 B0 | -\ 4.0)
5500 | \ 50
: A
50 120 | Al 50
45 40| 70
40 80| 5.0
35 g0 L : : 0
0B deg 5 6 B 10 20 30 40 60 GO 100 200 300 400 600 1k 3k 4k Bk 8k 10k 20k 30k 40k 60k BOk He
—

Figure 21. Mike distance = 1-00cm, HBT+LinPh vs. crossover only_— 60deg

Red = Linear_Phase + HBT EQ = 92dB-68dB = 24dB
Green = Minimum_Phase, No EQ =92dB-63dB = 29dB
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EQ Degradation Due to Distance

B MLS Frequency Domain
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Figure 22. Mike distance = 51cm, HBT+LinPh vs. crossover only — 0deg

Red = Linear_Phase + HBT EQ = 98dB-96dB = 2dB
Green = Minimum_Phase, No EQ =101dB-84dB = 17dB
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Figure 23. Mike distance = 51,100,210cm, HBT+LinPh — Odeg

There is minimal degradation in SPL flatness due to distance. HBT was calculated for
100cm distance. This is why the green SPL curve is the flattest.
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Conclusions

Loudspeakers under test were very “unsophisticated” loudspeaker systems. One
with a metal dome tweeter and woofer mounted flat on the front baffle. Second one had a
soft dome tweeter and two woofers. Simple 2-way crossover at 2kHz was used, and some
attempt has been made to reduce diffraction — foam around tweeter driver. This is
possibly the “worst-case” scenario, as a controlled directivity driver system would be
expected to perform much better in all tested scenarios. SPL Measurements were
conducted a Odeg, 15deg, 30deg, 45deg and 60deg off-axis angles in horizontal plane.
The WTW loudspeaker was measured in both planes and also evaluated at different
distances on axis. It can be concluded, that:

1. SPL irregularities were smaller for the DSP-equalized loudspeaker, for all
measured angles. Exceptional EQ performance is evident for on-axis
measurement at Odeg — see Figure 5, 12, 23 and 24. Also the 15deg off-axis
performance is significantly better with the equalized loudspeaker. For other
angles, the EQ improvement in flatness is 1-4dB or better.

2. Off-axis, both loudspeakers exhibited bumps and valleys in their SPL curves. The
WTW configuration measured in horizontal (as defined for HT system)
orientation exhibited large degradation in SPL, regardless of EQ used or not.
DSP-equalized SPL curves sometimes exhibit bumps and valleys located at
different frequencies than non-equalized loudspeaker.

3. DSP equalization of loudspeaker by HBT equalization technique improves SPL
linearity for off-axis angles, and provides near-perfect, flat-line SPL and phase for
the “all-important”, on-axis performance.

4. Equalized SPL curves exhibit good horizontal linearity below 3-4kHz, leading to
the conclusion, that diffraction is the major factor contributing to linearity
degradation at high frequency.

Amplitude and phase response of equalized loudspeaker extends to 30kHz, and on
the low-end, is only limited by the necessity of FFT gating, to remove room reflections.
See Figure 24 below.
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Figure 24. SPL (red) and Phase (green) of a 2-way TW (left) and WTW (right) UE5
equalized loudspeaker.
In summary: On-axis performance of a DSP-equalized loudspeaker is exceptional, and
off-axis performance is still better than non-equalized driver.
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Impulse Response Pre-ringing

Second issue often associated with linear-phase systems is pre-ringing of the
impulse response. It can be shown, that pre-ringing of the impulse response measured on-
axis will be marginal or not existent at all, as the low-pass and high-pass filters pre-
ringing will cancel each other. However, the off-axis pre-ringing is sometimes being
viewed as detrimental in FIR linear-phase filters. So, let’s put this issue under the
microscope.

Time (Temporal) Masking nhttp://zone.ni.com/reference/en-XX/help/373398B-01/svaconcepts/svtimemask/

“....Simultaneous masking describes the effect when the masked signal and the
masking signal occur at the same time. Human hearing is sensitive to the temporal
structure of sound, and masking also can occur between sounds that are not present
simultaneously.

Pre-masking is when the test tone occurs before the masking sound. Post-masking
is when the test tone occurs after the masking sound. The following figure shows the time
regions of pre-masking, simultaneous masking, and post-masking in relation to the
masking signal.
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Figure 25. Slopes of temporal masking

Post-masking is a pronounced phenomenon that corresponds to decay in the effect
of the masking signal. Pre-masking is a more subtle effect caused by the fact that hearing
does not occur instantaneously because sounds require some time to sense. As indicated
in the figure above, researchers typically can measure pre-masking for only about 20
ms.

Post-masking is the more dominant temporal effect and can be measured for
100 ms following the cessation of the masking sound. Both the threshold in quiet and
the masked threshold depend on the duration of the test tone. Researchers must know
these dependencies when investigating pre- and post-masking because they use short-

2

duration test signals to perform these measurements....”.
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A number of on-axis and off-axis measurements have been performed and the
resulting impulse responses are presented below. The set of measurements was conducted
at 1m distance, and the resulting sound level at the microphone was at quite low level

(see figure below).
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Normally, the lover received acoustic level would not present itself as a problem,
because it can be raised to the required SPL level by adding several decibels to the
resulting SPL response. However, it does affect dynamic range of impulse response
presentation quite dramatically, and as a result, the dynamic range is limited to around
55-60dB by the background noise (yes, | have lost over 15dB of the dynamic range). Yet,
the impulse response will be also presented in logarithmic scale (decibels), as it shows
the pre-ringing decay as well.

For the sake of clarity, three figures are presented in this order:

1. Only the pre-ringing portion of the impulse response is shown, together with
20ms left-hand Blackman-Harris window. The green window clearly shows
where the pre-masking effect (to the left) would cease to operate. This plot
presents impulse response in linear scale.

2. The same plot transferred into Impulse Response Export dialogue and
presented also in linear vertical scale. Now, the time scale is 42.7ms on the
left-side of the impulse response, so the plot is twice compressed in time.

3. The same plot presented also in logarithmic vertical scale with pre- and post-
ringing limits superimposed. You may expect the background noise quite
visible on this plot (as discussed above). Particularly, for the 45/60deg off-
axis measurements, where the total level of impulse response is further
reduced and after calibration to 0dB, the noise is raised at the same time quite
significantly. Time scale is 42.7ms on the left-side of the impulse response
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Figure below confirms time scale between impulse response taken at 60deg off-
axis and it’s plot transferred into Impulse Response Export dialogue and impulse
response as measured in MLS measurement system The shape of the impulse response is
identical in both instances, when plotted in the same screen resolution.
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Figure 26. Time scale comparison in MLS system and Impulse Response Export dialogue

We can now proceed with the examination of impulse responses.

Vertical pattern

The 0dB impulse response calibration was performed for the on-axis impulse
response. After that, the gain can not be changed for other impulse responses
measurements.
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Same plot transferred into Impulse Response Export
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15deg off aX|s |mpulse response magnification = 2x

{ Impulan F\nspunse vs. Time ]
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Same plot transferred into Impulse Response Export
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30deg off-axis, impulse response magnification = 2x

e Ref=2.20, In=-105.96, Bin=14821, Scroll[12900 - 148001

|

Impulse Response vs. Time

Same plot transferred into Impulse Response Export
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45deg off aX|s impulse response magnlflcatlon 4x
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Same plot transferred into Impulse Response Export
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60deg off-axis, impulse response magnification = 8x

ponse Ref=-0.61, In=242.23, Bin—1433, Scroll[ 12900 - 14900]

Distance: 5033.944 cm

Same plot transferred into Impulse Response Export
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BIIMLS Tmpulse Response Ref=-0.11, In="367.01, Bin=14875, Scrolll L2050 - 149.50)

eS|

Same plot transferred into Impulse Response Export

15deg off-axis, impulse response magnification = 1x

Acoustical Distance: 5048.994 cm

134.4 1309 1354 1358 1365 137.0 137.5 1380 1365 msw_lwsss 1401 1406 141.1 1417 1422 1427 1432 1438 1443 1448 1453 1450 1454 1459 147.4 147.9 140.4 1490 1425 1500 1505 151.0 1516 1521 1526 1531 1546 1542 1547 1552
v

# Impulse Response Window

10
i
A0
20
30
-40
50
50
70
80
80
100
10
120
130
140
150
160
470
d&

an
an
70
=]
&0
40
an
20
10
1}
-10
-20
-30
-40
50
50
70
B0
-a0

{ Impulse Response |

_(Ol ]

PO

P1

P2

P3

P4

P5

PB

P8

.-~

L

D.7ms

1.3m=

2 0ms

2.7ms

3.3ms

4.0ms

47ms

3m

Same plot presented also in logarithmic vertical scale with pre- and post-ringing limits

superimposed.

:S_‘j Impulse Response Window

10
0
10
20
30
40
50
50
70
80
a0
400
10
120
130
40
50
180

170
dB

a0
a0
70
&0
50
40
a0
20
10
0

10
20
30
-40
50
0

-7
80
80

=

=181

p

4 v

PD

P1

P2

P3

P4

P5

PB

P7

il

/.

</

-~/

0.Fms

1.3ms

2.0ms

2.7ms

3.3ms

4.0ms

4.7ms

24



| MLS Impulse Rosponse Rel—-0.41, 1n=1614.24, Bin=L4875, Scroll 12950 - 149501

30deg off-axis, impulse response magnification = 2x

Acoustical Distance: 5048994 cm
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60deg off-axis, impulse response magnification = 4x
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SIMLS Impulse Response Ref=-2.23, In

15deg off-axis, impulse response magnification = 1x

—95.85, Bin—14882, Scroll[12950 - 149501

Impulse Response vs. Time
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30deg off-axis, impulse response magnification

3} MLS Impulse Response Rel=0.28, In=+.12, Bin=11555, Scroll[ 12050 - 14950)

2X

{ impulse Response vs. Time )

|

Acoustical Distance: 5052.677 cm

Same plot transferred into Impulse Response Export
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_45deg off-axis, impulse response magnification = 2x
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Impulse Response due to distance

Odeg on-axis, 2meter distance, impulse response magnification = 4x




We have now examined 18 impulse responses of two different loudspeaker

systems: TW configuration and WTW configuration. Both two-way loudspeakers were
equipped with +/-24dB/oct Linkwitz-Riley crossovers at 2000Hz. These loudspeakers are
not small in size, and would be considered to be quite realistic representatives of
contemporary domestic Hi-Fi systems.

Measurements were conducted a Odeg, 15deg, 30deg, 45deg and 60deg off-axis

angles in horizontal plane for TW loudspeaker. The WTW loudspeaker was measured in
both planes and also evaluated at different distances on axis.

It was shown, that:

1.

Impulse response (and associated SPL) will deteriorate for off-axis measurements.
This is also very true for minimum-phase measurements.

Impulse response will marginally differ for various distance measurements. This
is also very true for minimum-phase measurements. Changes in SPL would not be
noticeable.

Measured off-axis, the impulse response deteriorates more for bigger off-axis
angles. The deteriorating (increasing) pre-ringing is evident on all these plots —
this is confirming the theory. However, the pre-ringing was not extended beyond
2ms, and will easily be suppressed by the pre-masking effect up to 20ms — just as
post-ringing is suppressed by the post-masking effect up to 100-150ms.

Both effects: pre-masking and post-masking are quite desirable in making the pre-
and post-ringing of the impulse response inaudible.

Pre-masking effect and lack of extended pre-ringing is perhaps the main reason as
to why the small, residual pre-ringing is not audible.
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General Conclusions

When discussing HBT-equalized, linear-phase systems, two issues are often
commented upon:

1. Hard equalization works only on-axis.
2. Linear-phase systems suffer from pre-ringing.

This paper attempts to shed some light at these two issues.
Hard equalization works only on-axis?.

Hard equalization (Inverse HBT) will perfectly flatten SPL and phase curves only
for the curve, that the HBT was calculated for — which is typically on-axis. The evidence
of this is clearly provided on Figure 12, where the red curve (HBT equalized) is as flat as
they come.

However, examination of Figures 13, 14 and 15 would lead to the conclusion, that
15deg off-axis performance is much better for the equalized case, 30deg off-axis is still
better and more extended than unequalised case, and even 45deg off-axis is still more
extended curve than the unequalised case. Not to mention, that the lower the frequency,
the better the equalization will be — this is due to diffraction (the major factor causing the
off-axis deterioration) being reduced to zero at low frequencies. All presented curves are
the in-room measurements results, therefore bass frequencies are windowed out.
However, anechoic measurements would reveal, that equalized SPL at low-frequencies is
much better than unequalised for all measured angels. This was evident from subwoofer
measurements documented in another paper.

So, is the statement “Hard equalization works only on-axis” correct?. The answer
can not be contained in one word because the measurements show, that:

1. On-axis, the equalised SPL curve was as flat as they come. So, yes, hard EQ
works perfectly on-axis.

2. For angles up to +/-15degrees the equalized SPL was much better across the
whole frequency range than unequalised one.

3. For angles up to +/-30degrees the equalized SPL was still better across the

whole frequency range than unequalised one.

For larger angles the equalised SPL was not worse that the equalized one.

For low-frequencies (less than 2kHz for the measured systems), the equalised

SPL was always better then unequalised one in Vertical Orientation of the

loudspeaker.

o~

Overall, the HBT-equalized system is performing much better than a system
without the equalization, and will provide flat frequency response for the all-important
first-arrival signals and improved performance at many other angles.
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Linear-phase systems suffer from pre-ringing?

Yes, linear-phase systems can exhibit pre-ringing in their impulse response, but it
seems to be rather difficult to make it audible.

Let us not forget, that post-ringing, exhibited by all traditional, minimum-phase
systems, is twice as bad as pre-ringing of the linear-phase systems, and yet, it goes
unnoticed. This is because the post-masker works effectively up to 100-200ms of the
impulse response duration.

Just the same, the pre-ringing is masked by the pre-masker effectively up to 20ms.

Impulse responses presented in this paper were conducted on two loudspeakers of
different configurations and sizes, so the results are not unique, and are representative of
contemporary style of designs. Crossover frequency for these two-way designs was set to
2000Hz and 24dB/oct LR configuration.

It is anticipated, that steeper slopes used (above +/-24dB/oct) would increase pre-
ringing, but higher crossover frequency (2kHz) would reduce the duration of pre-ringing.
In all cases for this system, the pre-ringing was not evident further away that 2ms from
the peak of the impulse response and was not audible.

If we consider a largely magnified in amplitude, linear-phase impulse response
of a high-pass 2000Hz, 24dB/oct LR filter — see figure below, we would conclude, that
pre-ringing is effectively extinguished about 1.6ms in front of the impulse response.

P& P7 8

/ \
/ l \
I

)

|v

Approx 1.6ms

Now, for comparison, we can use 60deg off-axis, system impulse response, with
8x magnification, and conclude, that the pre-ringing is also effectively extinguished about
1.6ms in front of the impulse response. This should come as no surprise, because even
that at 60deg off-axis we have lost the benefits of HP/LP impulse responses cancelling
each other, the pre-ringing is actually very short in time — see figure below.
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Extending this conclusion into impulse responses of filters designed for other
frequencies, we find, that the 20ms pre-masker effectiveness limit will be attained by
48dB/oct HP Butterworth filter with cut-off frequency of 20Hz — see impulse response
figure below, shown with impulse response in decibel scale.
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Or peaking filters, such as the one depicted below. Here we have a Q-Parametric
filter with gain of 30dB and Q-factor of 10.
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What causes off-axis pre-ringing?

System on-axis impulse response exhibits near perfect impulse response. This is
because (1) pre-ringing duration is often so short, that it is masked by the pre-masker and
(2) pre-ringing in low-pass channel will cancel pre-ringing in high-pass channel.
However, the off-axis performance will suffer degradation. What causes this
degradation?. One suggestion is that impulse responses do not add as perfectly as the on-
axis summation, and one possible cause is the time-of-flight difference between woofer
and tweeter radiation. This is further obscured by diffraction effects.

Another clue is provided by the shape of the pre-ringing section of the impulse
response curve. On the figure below, it is clearly observable, that the curve is smooth and
looks like a bump, as opposed to the jagged shape of the post-ringing curve.

The post-ringing curve includes some high-frequency components, as evidenced
by the sharp and oscillatory nature of the curve — see figure below.

Such differentiation would indicated, that woofer and a low-pass filter are
somehow more involved in exposing the pre-ringing process in this measurement and the
woofer driver and it’s filter are more dominant in this particular time zone. As suggested
above this would happen, if the woofer signal was advanced.
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Figures presented below on the left and the middle, show tweeter impulse
response of the +24dB/oct LR filter delayed by 45 time samples at 96kHz in time
reference to -24dB/oct LR woofer filter. This is equivalent of 0.4687 milliseconds, or
16.13 cm difference in sound travel time. The red plot on all figures below, represents
measured, 60deg off-axis impulse response. The resemblance in pre-response is striking,
so therefore the timing difference would pass as one of the factors contributing to pre-
ringing.
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Even more so, on the middle figure above, which is the enlargement of the plots
on the left. Here, we can observe, that even minute details of the simulated pre-ringing
follow the measured 60deg off-axis results very well. This can not be a coincidence.

Approx 16¢m

Front Panel

e Port

Port |

q 60deg off-axis

Indeed, the 60deg off-axis measurements locate the microphone approximately
16cm closer to the woofer. So the woofer will be advanced.

On the right-hand side, we can observe similar simulation of another two-way
system with the same filters. This time the delay is only 7 samples, or 2.47cm distance
difference. Once again, the resemblance in pre-response is striking, so therefore the
timing difference would pass as one of the factors contributing to pre-ringing.

Measuring the WTW loudspeaker in vertical orientation, we find that woofer
appears to be advanced by 0.156ms or 5.3cm due to radiation from two driver edges,
amplified by diffraction at 2kHz. The red plot on the left figure below, represents
measured, 60deg off-axis impulse response.
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visible on the figures below.
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The next example is a simulation only, and shows an impulse response of a
200Hz crossover filter built using +48dB/oct Butterworth filter and -48dB/oct
Butterworth filter, where the tweeter is delayed by 150 samples at 48kHz. Therefore the
woofer peaks at -3.125msec to the left of the tweeter impulse response — this is clearly
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This filtering arrangement would violate the pre-ringing limits of our stringent
pre-masker of -70dB — see below.
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However, in terms of the location difference, this situation amounts to

approximately ~1meter difference between woofer and tweeter arrival distance. This
would be highly unusual to measure the system where the microphone is 1 meter closer

to woofer than to the tweeter.
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Finally, a simulation of a typical 3-way system, where the crossover frequencies
are selected as 500Hz and 5000Hz. The filter if 24dB/oct LR design. The sampling rate is
48kHz, and impulse responses are shown in decibels.

Time-of-flight distance difference between drivers is as follows:

woofer — midrange = 28.6cm = 40 samples @ 48kHz
midrange — tweeter = 28.6cm = 40 samples @ 48kHz.
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Interestingly, the short analysis above indicates, that midrange and tweeter will
have less margin (well, almost none) under the stringent -70dB pre-masker.

Equalized subwoofer.

Since the pre-masker and post-masker are time-limited phenomenon, it may be
prudent to examine the slowest and heaviest driver in the system — the subwoofer. The
driver in this example is really big, 18” McCauley subwoofer, mounted in a 300 litre
venter enclosure. The equalization and filtering transfer function is depicted on the figure
below.
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It is noticeable, that the phase response of the correction filter is inverse. This is
because we are developing a linear-phase subwoofer. Also, the correction characteristics
are evident below 340Hz, as the filter transfer function (-24dB/oct, LR filter) is also
correcting driver’s SPL/phase below 340Hz.

Impulse response of the correction filter is shown below. Please note, that the
filter alone has developed significant pre-ringing and clearly fails the -70dB pre-masker
level. It is also observable, that the impulse response is very asymmetrical, not what you
would expect from a linear-phase system.
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Impulse response of the correction filter (green) in decibels, 10dB/div.

This is a very common misconception, when discussing linear-phase filters.
Simply because this is not the subwoofer channel impulse response — it’s missing the
actual subwoofer transfer function. Now, we can convolve the correcting filter with the
actual subwoofer and then examine the resulting subwoofer channel impulse response —
this is what you will be listening to.
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Pre-ringing of the complete subwoofer channel (red).

44




As shown on the figure above, the linear-phase impulse response (red) is now
almost exactly symmetrical, and the pre-ringing has dropped by 10-20dB. This is very
significant improvement, and now the total channel impulse response fits comfortably
under the very strict -70dB pre-masker and rolls-off towards timing extremes. And
here is the complete transfer function of the subwoofer channel. As you would expect, the
SPL is equalized right up to 340Hz, and the phase response is now a flat line.
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Complete transfer function of the subwoofer channel.
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Next, we can perform some measurements on the newly equalized
subwoofer.2ms-wide pulses separated by 350ms space were used as the source signal. On
the 2ms pulse, the minimum-phase subwoofer version delivered a more of a “thump”
instead of a pop or a click. This is perhaps not surprising, as the post-ringing of the pulse
extended to130ms and far exceeded the 30ms “memory effect” of the auditory system.
Here, the driver, filter and vented enclosure added it’s own, combined signature. It is also
observable, that the minimum-phase version of the subwoofer has converted the clearly
asymmetrical pulse into a much more symmetrical bi-polar pulse with post-ringing. This
clearly visible on the screen shots below

Trigger Mode

TAtoL Ao Nomel [
2ms Impulse in Linear-Phase Mode and Minimum-Phase Mode
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And here is the frequency and phase responses of the subwoofer.
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Figure 22. Frequency and phase responses of the equalized subwoofer.

The above level of performance was accomplished with the low-frequency
resolution of 5.86Hz (Buffer 1024 and 48kHz sampling). When the “raw” SPL and phase
do not contain rapid peaks and valleys, it is clearly possible to equalize the low-frequency
driver to excellent standard.

In conclusion, pre-ringing as shown by modeling and a number of presented
measurements, is typically predictable and manageable.

1. On-axis it does not exist.

2. Off-axis, in most applications, it is of such a short nature, that it is inaudible in
typical domestic Hi-Fi application.

3. Filtering slopes of LP and HP filters in crossovers are in order of 12dB/oct or
24dB/oct. These numbers are quite low and such filters do not have extended pre-
ringing.

4. In assessing pre-ringing, you must evaluate impulse response of a complete
channel (filter + driver), rather than filter alone.

5. Extreme filtering arrangements or loudspeaker mutual mounting arrangements
can lift it’s level above pre-masker attenuation. In this case, your system may
need simple redesign.

Thank you for reading.
Bohdan
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