New Features Implemented in Ultimate Equalizer 10.0.

1. The size of project data files is reduced to half of the V9 size. This is quite substantial change, and allows for faster loading of project files.

2. MLS system uses WASAPI 16bit/24bit drivers instead of the legacy WDM/MME drivers.

3. RoomEQ measurements use WASAPI 16bit/24bit drivers instead of the legacy WDM/MME drivers.

4. Added second version of the BBM system. The FL channel is independently filtered and summed with Left Subwoofer, and FR channel is independently filtered and summed with Right Subwoofer.

5. Current Bass resolution settings (buffer-size dependant) are displayed on MLS transfer function screen.

6. Bit depth on the input-side can be set to 16bit or 24bit. Many contemporary motherboards only allow for 16-Bit depth due to compatibility with CD recordings requirements.

7. MLS system uses the same impulse response files as SoundEasy V21. The UE10 and SoundEasy V21 programs are compatible for impulse response measurements.

8. WASAPI Debug Mode. Useful to debug sound card drivers implementation.

9. Automatically appends buffer size and sampling frequency to driver’s filename. Also, appends sampling frequency to impulse response filename.

This User Manual is intended to provide information about new features in version 10, and should be read in conjunction with the full User Manual for version 5, 6, 7, 8, and 9 available from Bodzio Software Pty. Ltd. website.
WASAPI Debug Mode

Wasapi Debug Mode is selected from Preferences screen as shown below.

Figure 1. Selecting WASAPI Debug Mode.

Figure 2. UE10 System Design screen displaying WASAPI information.
Then, proceed to the System Design Screen as usual, and plot all sub-systems responses. You will need to move the main System Configuration screen to the right, so a free section of the main screen is exposed to provide display of initialization progress of both: Capturing and Rendering WASAPI devices.

Important result to look for is the “Start OK” indication of both WASAPI devices: Capturing and Rendering – as shown on Figure 2.

Real-time SPL level adjustments

![Preferences screen with outputs selectable for adjustments.](image)

Important Note: When you first open the Preferences screen, the residual data displayed in the fields marked above may contain random value. Please assign your correct output ports to these data fields immediately.

Adjusting Master Volume

Master Volume control is performed remotely by pressing ARROW UP/DOWN keyboard keys. The SPL steps in 3dB increments/decrements.
Adjusting Volume of 4 Nominated Drivers (Rear Speakers)

This is a very handy and often used feature. It appears, that rear loudspeakers are not mastered in the recording studios at the same level. Thus some movies/concerts are lacking the sound coming from the rear speakers, and others are correctly edited. To remedy this problem, the program allows you to nominate 4 output ports (these will be your 4 drivers in the rear speakers) in the Preferences screen – see example below.

Adjusting Volume of 4 Nominated Drivers (Subwoofers)

Subwoofer levels are adjustable in +/-2dB steps. Up to 4 subwoofers can be nominated, so this includes the Left Subwoofer, Right Subwoofer and corresponding CABS sinks. INSERT (+2dB) and DELETE (-2dB) keys are used for this purpose.
Adjusting the BBM levels

Binaural Bass Management is a very useful feature allowing you to correct low-frequency content and balance between LFE channel and Front-Right and Front-Left channels.

Live concert reproductions can be enhanced by optimizing the usage of subwoofers in your systems. If the capabilities of LFE channel are not being fully utilized in the mixing process, the total listening experience can be diminished and simply lack the “bottom-end”. This can be particularly evident in “live rock” DVD recordings. Attending live concert impresses the patrons with a unique and memorable experience. Most people would comment about how “loud, solid and punchy” was the sound mix. Unfortunately, listening to the same concert on DVD often leaves quite different impression. For example, bottom-end balance in LFE channel features overpowering kick-drum and lack of bass guitar – this is almost opposed to what was experienced during the live performance.

BBM feature allows you to some extent re-balance the low-frequency mix, and feed the powerful low-frequency sound into the loudspeakers, that are built for it – the subwoofers.

Typical example here would be extracting bass guitar from the front channels and mixing it with the kick-drum in LFE channel to generate Left Subwoofer and Right Subwoofer signals.

BBM Input-Side

![Diagram of BBM Input Side](image)

Figure 4. Processing diagram for BBM Input Side.
This configuration uses all input channels and controls the level of low-frequency (filtered from all-left channels and all-right channels) signal mixed into left and right subwoofers. FR + RR + Cntr channels have their own level control prior being mixed into the RIGHT subwoofer channel. Also, FL + RL + Cntr channels have their own level control prior being mixed into the LEFT subwoofer channel.

Selection of the BBM Input Side option is accomplished via Preferences screen, by selecting “BBM Input” check box – see Figure below.

Care needs to be taken when all input surround channels run at high level. There is a possibility of saturating (clipping) of the signal when adding all channels together.
BBM Input-Side

This configuration only extracts low-frequency information from Front Right channel and Front Left channels.

FR channel has its own filtering provided (it can be any filtering arrangement, even cascaded filters) and their own level control prior being mixed into the RIGHT subwoofer channel. Also, FL channel has its own filtering provided (it can be any filtering arrangement, even cascaded filters) and their own level control prior being mixed into the LEFT subwoofer channel.

This BBM processing option is much safer from the “signal overload” point of view, as all the input signals are filtered prior being summed together.

Figure 6. Processing diagram for BBM Output Side.
It is observable, that BBM-Left is the signal processed between Input 1 (Front-Left) and Output 13. BBM-Right is the signal processed between Input 3 (Front-Right) and Output 14. Figure 7 above shows, that Output 13 is summed with Output 15, and Output 14 is summed with Output 16.
Adjusting Volume of 4 Nominated Drivers (Front Tweeters)

This particular adjustment option came to being after auditioning many movies and concerts. There seems to be a subtle difference (well, sometimes quite pronounced) in the amount of treble recorded during the final studio mix. Some video material has excessive brilliance and sibilance, and these can be controlled to large extent by controlling the level of tweeters in front speakers.

Brilliance - The 6kHz to 16kHz range controls the brilliance and clarity of sounds. Too much emphasis in this range can produce sibilance on the vocals.

Sibilant - "Essy" Exaggerated "s" and "sh" sounds in singing, caused by a rise in the response around 6 to 10 kHz. Often heard on radio.

In order to be able to adjust those level during playback, you need to nominate the outputs to which the tweeters are connected. In the example below these are: Out 1, Out 3 and Out 5. Output 7 is a dummy one, and nothing is connected to it.

The levels are controlled via “Home” and “End” keys on the keyboard in +/- 1dB steps.

<table>
<thead>
<tr>
<th>Tweeters</th>
<th>Home / End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tweeter 1</td>
<td>1</td>
</tr>
<tr>
<td>Tweeter 2</td>
<td>3</td>
</tr>
<tr>
<td>Tweeter 3</td>
<td>5</td>
</tr>
</tbody>
</table>

Home = Tweeters -1dB
End = Tweeters +1dB
Figure 9. Example of a system with front tweeters assigned to outputs 1, 3 and 5.

Figure 10. Tweeter at +10dB and tweeter at -10dB level.

Figure 11. Commonly used voicing with 6dB difference between 50Hz and 10kHz.
Motherboard Audio Codec Issues

Contemporary PC measurement system should be able to deliver 24bit sampling resolution. This is however dependant on sound card quality or motherboard audio codec – if you decide to use motherboard audio.

Older sound cards (but still available on eBay) like Delta1010LT will provide 24bit sampling resolution on both: recording and playback side. Also good quality motherboard audio codec like ALC1150 Audio Codec supports 24 bit sampling for both: “Line In” input and outputs – see below. As an example, the ALC1150 codec is implemented in GIGABYTE Z97X-UD5H motherboard.

![Realtek Audio Codec ALC1150 Line-In options.](image)

Figure 12. Realtek Audio Codec ALC1150 Line-In options.

Somewhat less fortunate implementation of audio codecs has been delivered in motherboards like ASUS P6X58D-E and GIGABYTE H170-H03. There is only 16bit sampling depth implemented on recording side, however, the full 24bits are available on playback side.

In order to help maximizing the overall performance of the MLS measurement system, the Preferences screen allows you to select 16bit/24bit option for sound cards. The selection is applicable to both: the recording AND playback of the measurement process. If your PC has only 16bit sampling depth available on the recording side, you MUST select “16 bit” option for the playback on your PC as well, and select “16-Bit Sound Card” from the Preferences screen.
Figure 13. Preferences 16bit settings and MLS system audio level adjustment to 35%.

Please note, that due to MLS signal “crest factor”, the output level should be less that 50% lower than maximum available output. It is recommended to set it to 34-35%. Shown below are two examples of motherboard audio codecs with 16bit sampling on the recording side and 24bit sampling on the playback side.

IMPORTANT - In the “Line Input” section of the sound card Manager, please set “Playback Volume” to 0 to prevent direct feed from the output to the input of the sound card. GIGABYTE H170-H03 Recording Side – please note, Recording Volume set to 50%, Playback Volume = 0.

GIGABYTE H170-H03 Playback Side

Figure 14. Audio Codec GIGABYTE H170-H03
ASUS P6X58D-E Recording Side - please note, Recording Volume set to 35%, Playback Volume = 0.

ASUS P6X58D-E Playback Side - please note, Main Volume set to 70%
It is strongly recommended, that prior to using Ultimate Equalizer software, you confirm the sampling rate and bit depth resolution settings with the sound card driver software or motherboard driver audio software for BOTH: playback and recording and set them to the same values.

Interestingly, a website with a compilation of all available motherboards with ALC1150 coded lists 284 motherboards available. The ALC1150 codec is capable of outperforming typical sound card or CD-player for signal to noise ratio.

http://us.hardware.info/products/19/9372-realtek-alc1150-motherboards?page=2#allproducts
Bass Resolution vs. Buffer Size

Currently selected Bass Resolution settings (buffer-size dependant) are displayed on MLS transfer function screen.

For 48kHz sampling frequency and Buffer Size of 2048 samples, the bass resolution is 2.93Hz. The figure is displayed on the MLS SPL screen, together with vertical, dotted lines marking the exact location of the FFT frequency grid – see Figure 18.

Figure 18. MLS SPL screen, with dotted lines marking the location of the FFT frequencies.
Automatically appends buffer size and sampling to a filename

It has been recommended, that impulse response is measured at the same setup at three frequencies: 44.1kHz, 48kHz and 96kHz. This will secure usability of the impulse response file with future sampling options for the driver files.

In order to simplify saving of the impulse response file, the program will append information about the currently selected sampling rate in the MLS system to the driver’s file name. The whole name is still available for editing, as per usual Windows File Saving mechanism – see Figure 18 below.

Figure 18. “_48k” appended if no file name has been entered.

Syntax of the portion appended to impulse response file is designed as follows:

_ single underscore character
XX two digits 44 – for 44.1kHz, 48 – for 49kHz, and 96 – for 96kHz, selected in Preferences screen
k single letter “k” for kilohertz.

Syntax of the portion appended to driver file is designed as follows:

Figure 19. “_1024b_48k” appended if no driver file name has been entered.

_ single underscore character
XXXX four digits 0512 – for 512 UE Buffer, 1024 – for 1024 UE Buffer, 2048 – for 2048 UE Buffer and 4096 – for 4096 UE Buffer selected in Preferences screen.
b single letter “b” for buffer.
_ single underscore character
XX two digits 44 – for 44.1kHz, 48 – for 49kHz, and 96 – for 96kHz, selected in Preferences screen
k single letter “k” for kilohertz.