## Using SE Optimizer For Quick Loudspeaker Design

This short paper, describes a couple if issues frequently encountered during loudspeaker design process. (1) An example design of a two-way loudspeaker system, with Linkwitz-Riley, 4th order crossover at 1.5kHz, and (2) amplitude peak equalization. The tool used for both processes is the Optimizer Function. Since the crossover is of the 4<sup>th</sup> order, the drivers are connected in-phase for normal operation. At this stage, we are not concerned about the availability of components with exact calculated values. Capacitors are easily paralleled, and coils can be easily modified to the required values.

Our drivers are: Woofer (pink) and Tweeter (green) SPL curves. Drivers have been fully edited and are minimum-phase.



## Woofer (green) and Tweeter (blue) Phase response curves



| •           | ·                | • | •      | . · | ń    |     |    | •   | •        |    |         | •               | •      |                 | •  |   |         | •       |            | •        | •          |             | •        | ·      | 2 | 5        |     |    | •  |    | •  |   | •          |     | •   | ,             | •                | ,  | •      | •       |   |   | • |          |         | •  |     |               |    |           |    | •      |   |    | •                | •  |   | •      |                       |    | • |    | •                | •  |   | • |    |   | •      |                 | •       |         |          | •      |         |    | •  |   | •      |              |   | •           | •   |                  | •                     |       |                            | •                          |                             |                          |                       | •                |
|-------------|------------------|---|--------|-----|------|-----|----|-----|----------|----|---------|-----------------|--------|-----------------|----|---|---------|---------|------------|----------|------------|-------------|----------|--------|---|----------|-----|----|----|----|----|---|------------|-----|-----|---------------|------------------|----|--------|---------|---|---|---|----------|---------|----|-----|---------------|----|-----------|----|--------|---|----|------------------|----|---|--------|-----------------------|----|---|----|------------------|----|---|---|----|---|--------|-----------------|---------|---------|----------|--------|---------|----|----|---|--------|--------------|---|-------------|-----|------------------|-----------------------|-------|----------------------------|----------------------------|-----------------------------|--------------------------|-----------------------|------------------|
|             | ÷.               | Â |        |     | ŭ    | _   | 1  | 2   | •        |    |         |                 | Ĵ      | a               |    |   |         | •       |            |          |            |             | ~        | ļ,     | Ĵ |          |     | 3  |    |    |    |   |            |     | •   |               |                  | 2  |        | Ċ       |   |   |   |          |         |    |     |               |    |           | 1  | ŝ.     | _ |    |                  |    |   | •      |                       |    |   |    | •                |    |   | à | Ĵ  |   |        |                 |         |         |          |        |         |    |    |   |        |              |   |             |     |                  |                       |       |                            |                            |                             |                          |                       |                  |
|             | ň                | P |        | ш   | 0.1  | .2  | 00 | ) п | n۲       | ١. |         |                 | Ì      | 4               |    |   |         |         |            |          |            |             | Ĩ        | ú      | 1 | 60       | 00  | ). | õ  | u  | ١H | ł |            |     |     |               |                  | ٦  | ľ      |         |   |   |   |          |         |    |     |               | ,  |           |    |        | 2 | ς, |                  | _  |   |        |                       |    |   |    |                  |    |   | Д | 2  | ð | Ń      | 6               | λ       | NÓ      | 00       | đ      | er      | 1  | ĺ. |   |        |              |   |             |     |                  |                       |       |                            |                            |                             |                          |                       |                  |
|             |                  | 1 |        | R   | 1.   | 10  | ٥. | 0 ( | 10       | hr | n.      | -               | Ť      | =               |    |   | _       |         |            |          |            | _           |          | R      | 4 | 1        | DI  | D. | .0 | L, | 10 | h | ìΠ         | n.  |     |               |                  | 4  | Ļ      |         |   |   |   |          |         |    |     |               |    |           |    |        | Ļ | 1  | 1                | é  | 2 | 5      | 2                     | 0  | X | ņ, | F                |    |   |   | ٢, | þ | Ģ      | 2               | 26      | 1       | 00       | С      | п       |    |    |   |        |              |   |             |     |                  |                       |       |                            |                            |                             |                          |                       |                  |
|             |                  |   |        |     |      |     |    |     |          |    | 1       | ł               |        | С               | 2  | 1 | 5       | .8      | 33         | 1        | u          | F           |          |        |   |          |     |    |    |    |    |   |            |     |     | 3             | 8                |    | lo     | 2       | 5 | 3 |   | 51       | DI      | D. | ų   | IE            | 1  |           | 1  | 2      | = | '≓ | 2                | 2  | f | ŕ      | 7                     |    | Y | 2  | ۰,               | ŧ. | I | Ψ | ~  | Ľ | Ľ.     | 3               | 36      | 1       | 90       | C      | П       |    |    |   |        |              |   |             |     |                  |                       |       |                            |                            |                             |                          |                       |                  |
|             | ·                |   |        |     |      |     |    | •   | •        | •  | 1       | -               | Ŷ      | Q               | •  |   |         | •       |            | •        | •          |             | •        | •      |   | •        |     |    | •  |    | •  |   | •          |     | •   |               |                  | Ś  | Я      | ŀ       |   |   |   |          |         | •  |     |               |    |           | 1  | 3      | 9 | 2  | •                |    |   | •      |                       |    | • |    | •                | ŀ  |   | ¢ | 5  | ŝ |        | = L             |         | UI<br>0 | 00<br>00 | п<br>0 | h.<br>M |    | •  |   | •      |              |   | •           | •   |                  | •                     |       |                            | •                          | ·                           |                          |                       | •                |
|             | •                |   |        |     |      |     |    |     | •        |    |         |                 | Ŷ      | 2               |    |   |         | •       |            |          |            |             |          |        |   |          |     |    | •  |    |    |   |            |     |     |               |                  | ſ  | 14     | ŧ.      |   |   |   |          |         |    |     |               |    |           |    | •      | ſ | h  | ś.               |    |   | •      |                       |    |   |    |                  |    |   | የ | 5  |   | 0.1    |                 | 1       | . 9     | Ľ        | -      | u       | •  | •  |   |        |              |   | •           | •   |                  |                       |       |                            |                            |                             |                          |                       | •                |
| ÷           |                  |   |        | a.  | 5    |     |    |     |          | Ċ  |         |                 | 4      | -               |    |   |         | :       |            |          | Ċ          |             | ١,       | J.     | 7 | Ź.       |     |    |    |    | Ì  |   |            |     |     |               |                  | Ę  | F      |         |   |   |   |          |         |    |     |               |    |           |    |        | 4 | F  |                  |    | 1 | Ú      | 1)                    |    | ċ |    |                  |    | - | ÷ |    |   |        |                 |         |         |          |        |         |    |    |   |        |              |   |             |     |                  |                       |       |                            |                            | Ċ                           |                          |                       |                  |
|             |                  |   | _      | U.  |      | . ' | Ο. |     |          |    | в       | 5               | _      |                 |    |   |         |         |            |          |            |             | _ (      |        | 1 |          |     | •  | _  |    |    |   |            |     |     | 0             |                  |    | _      |         |   |   |   |          |         |    |     |               |    |           |    |        |   |    | _                | ۰. | _ |        | _                     |    |   |    |                  |    |   |   |    |   |        |                 | _       | 4       |          |        |         |    |    |   |        |              |   | <u> </u>    |     |                  |                       |       |                            |                            |                             |                          |                       |                  |
|             |                  |   | -0     | _   | - 11 | -   |    | _   |          |    |         | -               | -0     | )               |    |   |         |         |            |          |            | _           | -        | _      |   |          | _   | _  | -0 | -  |    |   |            |     |     | ~             | -                | -0 |        |         |   |   | - | -        | -       |    | -   | -             | -  | -         | -  | -      | - |    | ю                | -  |   |        | - 1                   | _  | o |    |                  |    |   |   |    |   |        |                 | UM      |         |          |        |         |    |    |   |        |              | - | oı          | ł   |                  | -                     |       |                            |                            |                             |                          |                       |                  |
| :           | :                | ľ | -0     | 0   | 07   | 5   | .2 | 75  | u        | F  | Ĩ       |                 | ξ      | ,               | 8  | à | 0       | 6       | 0          | ζ.       |            | ,           |          | (      |   | 10       | ) - | 10 | 0  | 5  | 5  | 0 | u          | F   |     | Ĩ             |                  | ξ  | ſ      |         |   | 1 |   |          | 0       | où |     |               | _  | r.        |    |        |   |    | •                |    | R | 14     | 1                     | 3. | Ď | 0  | h                | n  |   |   |    |   |        | ſ               | Ľ       |         |          |        |         |    |    |   |        |              |   | ľ           | 2   | J                | 'n                    | ą     | _ [                        | Dn                         | įν                          | <i>r</i> ei              | r.                    |                  |
| :           | :                |   | -0     | 0   | 57   | 5   | .2 | 75  | u        | F  |         |                 | Į      |                 | 8  | 4 | ю<br>10 | Ó       | 0.<br>1.(  | í i      | ul-        | H<br>H      | он<br>in | (      |   | 10       | ) - | 1( | 0. | 5  | 5  | 0 | U          | F   |     |               |                  | Ş  | ŗ      | Ľ       | 1 | 1 | 1 | 1)<br>11 | 8<br>DI | 0  | 0   | ľ             | 'n | i F<br>ol |    | ň      |   |    | •<br>·           | -  | R | 14     | •                     | 3. | 0 | 0  | h                | па | 1 | • |    |   | •      | [               | ľ       | R       | 1:       | Ś      | 1       | 0. | ó  | 0 | 'n     | П            | • | ן<br>ו      | 2   | T<br>X           | 1                     | 3.2   | ا<br>5.                    | Ör<br>OC                   | ίν<br>0ο                    | лен<br>Эпт               | с<br>1                | •                |
| •           |                  |   | -0     | 0   | 27   | 5   | 2  | 75  | u        | F  | 6       |                 | ξ      | )<br> <br>      | 8  | 4 | Ю<br>10 | Ú<br>DD | 0.<br>1. ( | ) (<br>D | ul-<br>uio | ł           | іп<br>I  | )<br>) |   | 10       | ) - | 10 | 0. | 5  | 5  | 0 | U          | F   | 8   | 3             |                  | ξ  | ,<br>} | L'<br>R | 1 | 1 | 1 | 1        | 8<br>Di | 0  | 0   | ŗ             | n  | ol        | h  | ņ      |   |    | •<br>·           | -  | R | 14     | •                     | 3. | 0 | 0  | h                | -  |   | • |    |   | 1      | [               | j       | R       | 1:       | 5      | 10      | 0. | Ó  | 0 | h      | m<br>9       | • | ſ           |     | N<br>N<br>N      |                       | 3260  | 5.<br>5.                   | Dr<br>00<br>00             | iv<br>Do<br>Do              | /ек<br>ЭП<br>ЭП          | с<br>2<br>2           |                  |
| •           |                  |   | -0<br> | 0   | 57   | 5   | 2  | 75  | u        | F  | 6)<br>7 |                 | ξ<br>Γ | ]<br>[          | 89 | 4 | Ю<br>10 | 000     | 0.<br>1. ( | 0        | ul-        | ł           | іп       | 0      |   | 10       | ) - | 10 | 0. | 5  | 5  | 0 | 1 <b>U</b> | IF  | 8   | 3)<br>9)<br>9 | -                | Ş  |        | R       | 1 | 1 | 1 | 11       | 8<br>Di | 0  | 0.0 | ) (           | n  | ol        | h  | ņ      |   |    | ••<br>·<br>·     | -  | R | 14     | <b>•</b>              | 3. | 0 | 0  | h                | -  |   | - |    |   | ţ      | -[<br>-[        | ľ<br>·] | R<br>2  | 1:       | 5      | 10      | ). | Ó  | • | h      | ,<br>10<br>9 | • | P<br>-<br>- |     | N N N S          |                       | 3260  | 0<br>5.<br>5.<br>0<br>=9   | Dr<br>D(<br>D(<br>D(<br>A) | iv<br>Do<br>Do<br>Do<br>Do  | лен<br>Элт<br>Элт<br>Элг | 5<br>3                |                  |
| ·<br>·<br>· | ·<br>·<br>·      | - | -0<br> | •   |      | 5   | .2 | 75  | <b>u</b> | F  | 6)<br>7 |                 |        | ן<br>ייי        | 89 | 4 | Ю<br>10 | 000     | 0.<br>1.(  |          | ule<br>Lie | H<br>h      | iπ       |        |   | 10       | )   | 10 | 0. | .5 | 5  | 0 | <b>u</b>   | IF  | :   | 3.<br>9       | -<br>-<br>+      |    |        | R       | 1 | 1 | 1 | 11       | 8<br>Di | 01 | 0.0 | r<br>I I<br>I | n  | l H<br>ol | ו  | ņ<br>Ņ |   | •  | •<br>•<br>•<br>• | -  | R | 14     | -<br>-<br>-<br>-<br>- | 3. |   | 0  | hi               |    |   |   |    |   | 1      |                 |         | R<br>2  | 1        | 5      | 10      | 0. | 0  | 0 | h<br>· | 9            | • |             |     | N<br>N<br>Z<br>S | 11<br>(= (= 5=<br>)(P | 32601 | 5.<br>5.<br>0.<br>={       | Dr<br>D(<br>D(<br>D(<br>30 | iv<br>Do<br>Do<br>on<br>) f | леі<br>Эп<br>Эп<br>Dd    | i<br>b<br>l<br>l<br>B | ·<br>·<br>·      |
| ·<br>·<br>· | ·<br>·<br>·<br>· |   | -0<br> |     |      | 5   | 2  | 75  | <b>u</b> | F  | 6.<br>7 |                 |        | ן<br>ייי<br>ייי | 89 | 4 | Ю<br>10 |         | 0.<br>1. ( |          | uk<br>uk   | <br>h       | о-<br>іп |        |   | 10<br>10 | )   | 10 | 0. | .5 | 5  | 0 | 1 <b>U</b> | . F | :   | 3.<br>9.      | -<br>-<br>-      |    |        | R       | 1 | 1 | 1 | 10       | 8<br>Di | 01 | 0.0 | Î<br>Î        | n  | l H<br>ol | ו  | n      |   |    | •<br>•<br>•<br>• | -  | R | 14     |                       | 3. |   | 0  | hi<br>-<br>-     |    |   |   |    |   | :<br>1 | 1               |         | R<br>2  | 1        | 5      | 10      | р. | 0  | 0 |        | 9            |   |             | 1 0 | NZ S             |                       | 32601 | <br>5.<br>5.<br>.0<br>= {  | Dr<br>00<br>00<br>00<br>90 | iv<br>Do<br>On<br>) 1       | лен<br>Sm<br>Sm<br>Dd    | n<br>IB               | ·<br>·<br>·      |
| •           | ·<br>·<br>·<br>· |   | -0     | 0   |      | 5   | .2 | 75  | <b>u</b> | F  | 6.<br>7 | -<br>-<br>-<br> |        | ן<br>ייי<br>ל   | 89 | 4 | Ю<br>10 |         | 0.<br>1. ( |          | ule<br>ule | <br>H<br>ph | о        |        |   | 10<br>10 | )   | 10 | 0. | .5 | 5  | 0 | <b>U</b>   | (F  | . 8 | 3.<br>9       | -<br>-<br>-<br>- |    |        | R       | 1 | 1 | 1 |          | 8<br>Di | 01 | 0.0 |               | n  | iH<br>ol  | ור | •<br>• |   |    | •<br>•<br>•<br>• |    | R | 14<br> |                       | 3. |   | 0  | -<br>-<br>-<br>- |    | 1 |   |    |   | 1<br>1 | -<br> <br> <br> |         | 2<br>2  | 1        | 5      | 10      | 0. | 0  | 0 |        | 9            | - |             |     | N<br>N<br>Z<br>S |                       | 32600 | (<br>5.<br>5.<br>.0<br>= { | Dr<br>00<br>00<br>00<br>90 | iv<br>Oc<br>Oc<br>0 1       | лен<br>Эл<br>Эл<br>Dd    | i<br>B<br>I<br>B      | ·<br>·<br>·<br>· |

**Original System Frequency Response (pink) and Reverse Null (green)** 



It is observable, that raw frequency response of the system is tilting upwards. This suggests, that tweeter efficiency is too high for the given woofer. Also, the "reverse null" is non-existent. This suggests, that phase responses at the crossover frequency are not 180deg and amplitudes are not -6dB both drivers. This loudspeaker would be lacking bass and sound overly bright.

# Optimizing Acoustic Response of the Woofer

|            | - 10 - <b>1</b>            | · · · · · · · · <u>1</u> · <u>4</u> · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|----------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>: 연</u> |                            |                                                 | P P Note that the second secon |
| · 111      | . R1 100.0 uohm.           |                                                 | L □R17 8.0 ohm □ X=25.00cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                            | C2 15.831 uF.                                   | C5 3.500.uF 12 IC 16 22.000 uF V Y= 35.90cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                            | e                                               | 🙀 · · · · · · · 13 φ · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | · · · · · · · · · <b>·</b> | <u>,</u>                                        | δ <sub>4</sub> δδδδδδδ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 1,15,211114                |                                                 | ₽° · · · · · · · ₽°° · 10 · · · · ₽° · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Optimization Parameters – 4 components: L0, C2, L3, C5. This is the whole low-pass section.

| CAD Optimization Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAD Optimization Control                                                                                                                                                                                                                                                                                                   | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Targets Optimization Nodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Targets Optimization Nodes                                                                                                                                                                                                                                                                                                 |   |
| Reference Configuration   Reference Type     L-P Passive, -12dB/oct   Butlock selected     L-P Passive, -2ddB/oct   Butlock selected     3. Reference Filter Cut-Off   Qo Target     High-Pass F3dB   1500   Hz     2.002-Pass F3dB   1500   Hz     4. Optimize Within This Frequency Range   From:   100.0     From:   100.0   Hz   To:     5. BUT Exclude This Frequency Range   From:   6.0     From:   0.0   Hz   To:     6. Additional Reference Curve Shape Control   From:   0.0     From:   0.0   Hz   To:     6. Additional Reference Curve Shape Control   From:   0.0     From:   0.0   Hz   To:     6.1-off:   0.0   dB/dec   Add Ripples     Attenuation:   -5.0   dB, positive number for gain     Show Target   Clear   Print | Doubleclick to Highlight ==> Optimize These Items     IO = 1.200000 mH     R1 = 0.000100 ohm     C2 = 15.83125 uF     I.3 = 0.600000 mH     R4 = 0.000100 ohm     C5 = 3.500000 uF     W6 Woofer 1     C7 = 5.275000 uF     Abort   Lock ALL     New Val   Old Val     Accept New Values     Print   Clear     Step = 25 % |   |

## **Optimized Woofer Filter SPL curve (brown).**



### **Optimizing Acoustic Response of the Tweeter**

|   |   | i<br>1 | 01 | 5   | 6   |    |    |            | ÷ | - 1 |    | :          | :  | :   | 6  | Ż   | 8   | ŝ    | :   | :    |            | Ę |   | :  | :    | :   |     |    | ÷ | 8 | 1   | 0   | 11  | :   | 1   | ÷ |   |   |    | : | :   | :   |   |   |   |             | • •          |              |        |   |
|---|---|--------|----|-----|-----|----|----|------------|---|-----|----|------------|----|-----|----|-----|-----|------|-----|------|------------|---|---|----|------|-----|-----|----|---|---|-----|-----|-----|-----|-----|---|---|---|----|---|-----|-----|---|---|---|-------------|--------------|--------------|--------|---|
|   |   | ł      | C  | 7 ( | 5.2 | 75 | uF |            | ł | LB  | 40 | <u>0</u> . | Ő, | ιĤ  |    | C1  | 0 ( | 10.3 | 550 | ) ul |            | ł | Ľ | 11 | 1.81 | 00  | 'nΗ | I. | • | ł | R1  | 4 : | 3.0 | ohr | TR. | - |   | 1 | R  | 5 | 10. | ó a |   | ĥ | 1 | T.13<br>X=2 | 0<br>25.0    | rive<br>IDon | r<br>n |   |
| • | • | ÷      | ·  | ·   | ·   | •  |    | .6.<br>. 7 | Q | RS  | 1  | UU.        | U. | tou | im | • • | •   | ·    | ·   | ·    | .8.<br>. 0 | Ģ | R | 12 | 100  | .u. | uol | hm | · | ÷ | • • |     | ·   | ÷   | ·   | - | 1 | h | 12 | ÷ | ·   | :   | 9 | 片 | 1 | Y=6<br>Z=0  | 35.0<br>).00 | l0en<br>Iem  | n .    | • |
|   |   | ,      |    |     |     |    |    |            | ļ |     |    |            |    | ,   |    |     |     |      |     |      |            | ł | 9 |    |      |     |     |    |   | , |     |     |     |     |     |   |   |   |    |   |     |     |   | ľ |   | SPI         | =9           | 0.00         | 18     |   |
|   |   |        |    |     |     |    |    |            | ÷ |     |    |            |    |     |    | • • |     |      |     |      |            | Ę | Ē |    |      |     |     |    |   |   |     |     |     |     |     |   |   | Ĵ | 12 |   |     |     |   | ļ | 0 |             | • •          |              |        |   |

# Optimization Parameters – 6 components: C7, L8, C10,L11 + L-Pad R14, R15

| CAD Optimization Control                                                                                                                                                                                                                                                                                                                                                                   | CAD Optimization Control                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Targets Optimization Nodes                                                                                                                                                                                                                                                                                                                                                                 | Targets Optimization Nodes                                                                                                                                                                                                                                                                                    |
| Reference Configuration   Reference Type     H-P Passive, +12dB/oc   Bullock selected     H-P Passive, +18dB/oc   Butterworth selected     H-P Passive, +24dB/od   Linkwitz selected     3. Reference Filter Cut-Off   Qo Target     High-Pass F3dB   1500   Hz     Qo .333   Low-Pass F3dB   1500                                                                                         | Doubleclick to Highlight ==> Optimize These Items<br>I.8 = 0.660767 mH<br>R9 = 0.000100 ohm<br>C10 = 14.36615 uF<br>L11 = 98.76871 mH<br>R12 = 0.000100 ohm<br>T13 Driver<br>R14 = 7.923940 ohm<br>R15 = 7.787771 ohm                                                                                         |
| 4. Optimize Within This Frequency Range     From:   300.0   Hz   To:   20000.0   Hz     5. BUT Exclude This Frequency Range     From:   6.0   Hz   To:   10.0   Hz     6. Additional Reference Curve Shape Control     From:   0.0   Hz   To:   0.0   Hz     Roll-off:   0.0   dB/dec   Add Ripples     Attenuation:   -5.0   dB, positive number for gain     Show Target   Clear   Print | Optimize   Zin [ohm] Constrained     Abort   Lock ALL     New Val   Old Val     New Val   Old Val     Accept New Values   100.0     Print   Clear     Step = 25 %   Zin [ohm] Conjugate     6.0   Apply     Cmp = 6, Error = 370.5, ZinErr = 398.38, Trial = 150     Zmin = 4.0, Zin = 7.98, Ztar = 6.0 [ohm] |

## **Optimized Tweeter Filter SPL curve (brown).**



### **Complete Optimized Values**



**Optimized SPL (green) and Reverse Null (pink)** 



## Before (pink) And After (Green) Comparison





## Zin Before (violet) and After (blue)

### Phase Response Before (green) and After (blue)



It is observable, that after the optimization, the Input Impedance (Zin) curve if flatter and the System Phase response transitions at 1500Hz – which is what is expected. Frequency response is now flat, the reverse null is sharp and almost -20dB deep.



# Optimized crossover



#### **Optimizer Has Re-designed the Crossover.**

C5 = 80.7nF (very small) is NOT NEEDED. When set to Open Circuit, is does not have any influence on the crossover operation.

L11 = 98.8mH (very large) is NOT NEEDED. When set to Open Circuit, is does not have any influence on the crossover operation.





### **Compensating Amplitude Peak**



#### Frequency response has a +10dB amplitude peak – see figures below.



Amplitude Peak Equalizer generated component values as shown

above. The peak is greatly reduced, but not eliminated.



#### Now, the optimizer is engaged. Optimization Parameters are as follows:

| CAD Ontimization Control                                                                         | × |
|--------------------------------------------------------------------------------------------------|---|
| Targets Optimization Nodes                                                                       | _ |
| Reference Configuration Reference Type                                                           |   |
| L-P Passive, -6dB/oct A<br>L-P Passive, -12dB/oct<br>L-P Passive, -18dB/oct Butterworth-Type se  |   |
| 3. Reference Filter Cut-Off Qo Target   High-Pass F3dB 450.0 Hz   Q 0.333   Low-Pass F3dB 500000 |   |
| 4. Optimize Within This Frequency Range                                                          |   |
| From: 100 Hz To: 10000 Hz                                                                        |   |
| 5. BUT Exclude This Frequency Range                                                              |   |
| From: 6.0 Hz To: 10.0 Hz                                                                         |   |
|                                                                                                  |   |
| From: 0.0 Hz To: 0.0 Hz                                                                          |   |
| Roll-off: 0.0 dB/dec Add Ripples                                                                 |   |
| Attenuation: 0.0 dB, positive number for gain                                                    |   |
| Show Target Clear Print                                                                          |   |

Optimization was performed in two stages. Stage 1 – C1 + L2 resulting in SPL curve improvement (blue) as shown below.







Further down are the comparison results between the values calculated by the Amplitude Peak Equalizer (green), and values optimized by two-stage optimization process (olive). Original SPL curve is pink. Please note, that the vertical resolution dB scale was set to 1dB. Otherwise, in 5dB scale, the optimized curve was a flat line.



# Conclusions

- 1. Loudspeaker system has been designed and optimized without single manual tweak of any component.
- 2. Optimizer handled up to 6 components at a time, even though it is not recommended to exceed 3 components.
- 3. All of the parametric performance curves exhibit good characteristics after optimization.
- 4. Optimized SPL curves for individual filters do not follow 4th order LR filters, but the acoustic responses from the drivers do. This was the design goal.
- 5. Optimizer has also eliminated two components from the crossover circuit.
- 6. Local SPL irregularities (10dB peak, for example) are also handled very well by the optimizer, using two-stage process.